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Executive Summary — Bubbly media play a significant role in underwater acoustics, medical 

ultrasound and in industrial systems where gas-liquid flows are present. The focus of our research 

has been to develop a continuum model for bubbly mixtures that can be used to model physical 

phenomena in these areas. The key to the continuum model is a nonlinear, non-equilibrium equation 

of state (EOS) that relates pressure to the mixture density and the number density (number of 

bubbles per unit volume) and their first two material time derivatives. The derivation of the EOS 

is presented here and a number of traveling wave solutions obtained using this nonlinear EOS are 

discussed. To develop an accurate model, two important damping mechanisms for the medium had to 

be incorporated: heat transfer and relative motion between the gas and liquid phases. To quantify 

the importance of heat transfer, an analysis of single-bubble radial oscillations was completed in 

this work, and a Pade approximation for the thermal damping was derived from the linearized gas 

dynamics equations. A second important damping mechanism arises from relative motion between 

the gas bubbles and the liquid. The quantitative effects of relative motion on the damping of waves 

in bubbly liquids has also been examined and is described here. 
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1    Introduction 

The study of wave propagation in liquids containing gas bubbles is an interesting multiphase flow 

problem because the bubbles themselves can behave in a highly nonlinear fashion due to their large 

compressibility. Bubbly liquids occur in a number of environmental and industrial settings. Bubbles 

are present near the surface of the ocean in the form of bubble clouds and plumes. Air becomes 

entrained in the ocean by breaking waves or the passing of surface ships. Bubbles oscillations give rise 

to underwater sound or, in the case of surface ships, collapse of cavitation bubbles may cause damage 

to propeller blades. In industry, the presence of bubbly mixtures can lead to inefficient performance 

in chemical reactors and boilers, or to safety problems for nuclear power plants. Bubbles also play a 

role in applications of medical ultrasound, such as lithotrispy (breaking of kidney stones by sound) 

and through their use as contrast agents during ultrasonic imaging. The objectives of this work were 

to devise a continuum-level description of wave propagation and fluid flow in bubbly liquids and to 

study nonlinear waves (e.g. shocks) in such media. 

Campbell and Pitcher [1] carried out the first qualitative experiments on shock waves in bubbly 

liquids. They established that the Mach number of the wave must be greater than unity for shocks to 

exist. The Mach number was defined as the speed at which the shock propagates divided by the sound 

speed of the medium ahead of the shock. Experiments performed by Noordzij and van Wijngaarden 

[2] depicted three qualitatively distinct shock waveforms by stages. The first stage is considered the 

"classical" shock profile. This profile can be characterized by a steep rise in pressure from a low 

equilibrium value followed by an oscillatory relaxation region where the waveform oscillates about 

a high equilibrium value. The oscillations that follow the initial discontinuity are a direct result of 

the presence of gas bubbles in the liquid. 

Van Wijngaarden [3] was the first investigator to present a theoretical model describing bubbly 

liquids as a continuum. The derivation of the model was primarily based on physical arguments and 

so the extent to which the equations were valid was not rigorously defined. Later, Caflisch et al. [4] 

started with the equations describing the medium on a microscopic scale, and through the use of 

asymptotic homogenization, derived equations valid on the macroscopic scale. Further theoretical 

work was done to incorporate additional physical effects into the model. Watanabe and Prosperetti 

[5] included thermal conduction, which is considered the most dominant damping mechanism during 

bubble oscillations. Most often the bubbles are assumed to expand and contract adiabatically, but 

this is known to be inaccurate in practice. Sangani [6] extended the model to include bubble-bubble 

interactions. Tan and Bankoff [7] considered theoretically the effects of relative motion between the 

two phases. Their work was followed up a decade later by Kameda and Matsumoto [8] and by Ishii 

et al. [9] In these papers, the authors were able to incorporate the effects of relative motion as well 

as some thermal effects into their numerical simulations. However, their results were obtained by 

performing calculations on each bubble in the flow, negating the advantage of considering a bubbly 

medium as a continuum. More recently, Kameda and Matsumoto [10] have shown that there can be 

good agreement between theory and experiments, if the experiments are performed in bubbly liquids 

in which the bubble distribution is spatially uniform. There is an extensive list of work focussing on 



shock propagation in bubbly liquids which includes [ll]-[27]. 

In order for a continuum description of bubbly liquids to be valid, there needs to exist a separation 

of length scales. Typically one assumes that the distance between bubbles is much larger than the 

radii of the bubbles, so bubble-bubble interactions can be neglected. The size of an averaging 

volume should be large so that it contains many bubbles, but small when compared to the acoustic 

wavelengths of interest. With the latter assumption, average field quantities (e.g. pressure) can be 

defined in the averaging volume, which are spatially uniform over the volume. As a consequence 

of this separation of length scales, a non-equilibrium equation of state (EOS) can be derived. For 

flows where the relative motion between the phases is negligible, this EOS is a nonlinear relation 

between the pressure and the density and its first two material time derivatives. Nigmatulin [28] 

was the first to point out that an EOS of this form can be obtained; wave motion in such media was 

further investigated by Gavrilyuk [29]. Other assumptions for the derivation of the EOS are liquid 

incompressibility, monodispersity, and absence of bubble breakup or coalescence. 

With the aim of describing shock propagation in bubbly liquids quantitatively, we present several 

ideas for theoretical modeling and discuss preliminary results. We first consider the issue of thermal 

damping of a single bubble in an infinite liquid. Insightful work investigating thermal damping 

in single bubble oscillations can be found in papers by Devin [30] and Prosperetti [31]. Solutions 

for the equation of motion for an isothermal or an adiabatic bubble are straightforward but not 

very accurate in modeling real bubbles. By accurately describing heat conduction for a linearly 

oscillating bubble, we develop an effective thermal viscosity which will contribute to the damping 

of sound waves in bubbly liquids. Values of this viscosity are found to be only a function of the 

equilibrium radius of the bubble and can be written in the form of a Pade approximate. 

In the next phase of our analysis we derive the non-equilibrium EOS for a monodisperse bubbly 

liquid incorporating the relative motion between the gas phase and the liquid phase. The importance 

of the EOS is that it contains all the physics needed to characterize the nonlinearity of the medium 

in a continuum model. This approach is meritorious both theoretically and computationally for its 

simplicity. We will not have to keep track of each individual bubble in order to calculate nonlinear 

wave propagation through the bubbly medium. Including relative motion into the model leads to a 

greater understanding of the damping mechanisms, and how they interact with one another, within 

bubbly liquids. Also presented herein are some results which are obtained through this approach. By 

seeking a traveling wave solution using the EOS in conjunction with the fully nonlinear continuity 

and Euler equations, a phase-plane description of the system can be obtained. The phase portrait 

provides insights into the qualitative behavior of shocks in bubbly liquids. 

2    Thermal Damping of a Single Bubble:  Pade Approxima- 
tion 

The derivation for the thermal damping of a single oscillating bubble begins with the Rayleigh-Plesset 

equation.   The Rayleigh-Plesset equation describes the nonlinear motion of a radially oscillating 



bubble in an infinite liquid. It is a second order ordinary differential equation (ODE) for the radius 

R(t) of the bubble as a function of time t: 

P/[ÄÄ+|Äa] + ^    =   Pgw-P00^). (1) 

Here pt and \it are the density and viscosity of the liquid, P°° is the forcing pressure far from the 

bubble center and, for this derivation, it is considered to be known. Pgw is the pressure inside the 

bubble evaluated at the bubble wall. In order to solve Eqn. (1), the pressure inside the bubble must 

be determined. For this purpose the equations of gas dynamics within the bubble need to be solved. 

They are: 

|f + pV-v   =   0 (2) 

p^ + VP   =   0 (3) 

^f-W    =    V-^ (4) 

P   =   pKT (5) 

representing the conservations of mass, momentum, and energy and the equation of state for an 

ideal gas, respectively. In the above equations p, P, v and T are the density, pressure, velocity and 

temperature of the gas. Whereas K is the thermal conductivity, cp is the specific heat capacity of 

the gas at constant pressure, and 11 is the universal gas constant. Note that the viscosity of the gas 

is neglected in this analysis whereas thermal conduction is included. We now assume a perturbation 

expansion of Eqns. (l)-(5) in the following form 

p = Po + epi + ■ • • 

P = P0 + ePi + ... 

v = 0 4- evi +... 

T = T0 + eTi + ... 

R = RQ + ePi + ... 

The 0(e) equations in the radial direction are 

dpi 
dt 

dpi  , Po d . 2   . ,„,. 

p°-dT + -dV = ° (7) 

dTx     dPi K d ( 28TA 
P0C»-b7--bT = 7>d-r\r-b7) (8) 

Pi = K(ToPl + poTi) (9) 



with the Rayleigh-Plesset written as 

We scale the variables as follows 

r 

r -ft 
p* _ Pl 

t* = u„t „*        Pl 

'''To 

rp*          Tl 
xl  — 7p~ 

-to 
* _     Vl 

RQW0 

The time scale is based on the period of oscillation for a single adiabatic bubble whose natural 

frequency can be written as 

at 

/37Po 

Rewriting the 0(e) equations in dimensionless form (dropping the *'s) yields 

£+£!<**> = ° (11) 

dV! 1    dP1      _ (     . 

i   ,7-Mfi   _  J_ljLfr2#M rial 
1   7   ; dt Per2 Or V    9rj 

Pi    =    (Pi+Ti) (14) 

In Eqns. (11)-(14) we have introduced two key nondimensional parameters, the Mach number and 

the Peclet number: 

Mb = u0RoM Pe=^*° 
V P0 K/PCp 

The Peclet number Pe is a measure of convective to diffusive effects. If the Peclet number is small, 

there is a thick thermal boundary layer in the bubble and the bubble can be considered isothermal. 

For large Peclet numbers, on the other hand, the bubble has a thin thermal boundary layer and can 

be considered adiabatic. The second dimensionless parameter is the acoustic Mach number, Mb, 

inside the bubble. For an ideal gas inside an oscillating bubble, the acoustic Mach number is small. 

Therefore, the r-momentum equation reduces to 

fUo       _>       * = *(«) 



We add the continuity and energy equations and use the ideal gas equation of state Eqn. (14) to 

get 

1 dPi      lö,2, 
7 dt      r2 or Pe r2 dr 

fr2dTA 

Multiply Eqn. (15) by r2 and integrating from 0 to 1 yields 

rf_dl\ l 

37 dt 
2    ,i       1    2dTi 

(15) 

(16) 

Eqn. (16) gives an expression for time derivative of the pressure in terms of the heat flux at the 

surface: 

_ = _37i?1 + ___ (17) 
r=l 

Equation (17) can now be used in the energy equation (13), resulting in an equation for the tem- 

perature field only: 

AT) 
dt 

1      or        -nfo 1   öri "\ !    1   °   { 2dTA (18) 

Since the gas is in thermal equilibrium with the liquid and the temperature of the liquid is a constant, 

T0, we have the following boundary for Ti for the equation above 

Ti = 0       at   r = 1. 

We now seek solutions to (18) of constant frequency 

P1 = 3?[Peint] 

(19) 

Tj = R[f (r)e' iiU-i 

Eqn. (18) becomes 

iüf + 3(7 - 1) 

Äi = $l{Re 

iüR-l-f'(l) 

iüti 

1    1    d'_2*/X 
Pe r2 dr 

(rar) (20) 

Since the second term in Eqn. (20) is a constant, we define a new variable, 0, which takes this into 

account 

0 = f + 3(7 - 1) *+sss*'<1> 
Now we have a much simpler ODE to solve, namely 

(21) 

(22) 



with the boundary conditions 

6(1)   =   3(7-1) *+SKiww 

0(0) is finite 

For differential equations of this form, rewriting the dependent variable, 0, as the ratio -^ can 

lead to the simplified ODE 

2iXQ(r) = Q"(r) (23) 

in which 

with new boundary conditions 

A2 = 
fiPe 

Q(l)    =   3(7-1) Ä+^(l) 

Q(0)   =   0 

Eqn. (23) has the general solution 

Q(r) = A sinh[(l + i)Ar] + B cosh[(l +t) Ar]. 

Applying the boundary conditions gives 

sinh[(l + i)Xr] 
Q{r) = 3(7 - 1) 

We now use 0 = Q/r and Eqn. (21) to write 

T = 3(7-1) 

R+^ni) 
sinh[(l + *)A] ' 

R+^ni) 
/sinh[(l + QAr]      A 
Vrsinh[(l + i)A]       J 

(24) 

(25) 

(26) 

sinh[(l + t)A] 

An expression for f"(l) is found by taking the derivative of Eqn. (25) at r=l. 

f      =   3(7-l)[(l + t-)Acoth[(l+»)A]-l]  k 

1 - %^ [(1 + 0* coth[(l + t)A] - 1]   • 

From Eqns. (18) and (26) we have an expression for the pressure inside the gas bubble at the wall. 

itlP = -i3inR+p-f'(l) 
Pe 

37 3(7-l)*(A) 

l-i2feÜ¥(A). 
R. (27) 

Here 

*(A) = (1 + *)Acoth[(l + i)\] - 1. 



In the limit of large Pe, A -*• oo and * simplifies to 

$(A) = (l + i)A-l. 

Given the pressure inside the bubble as a function of frequency, it is possible to write down the 

response of an oscillating bubble from the Rayleigh-Plesset equation (1): 

-n^+i2Cnfi+3(T_'^+inPe«^ (28) 

This is the exact linear solution for an oscillating bubble. For the unforced case, the free response 

for a bubble has a frequency which is a root of: 

-"* + ^ + 3(7-l)*PUpe=° <29) 

The thermal effects for an oscillating bubble are contained in the last term in Eqn. (29), which comes 

from the pressure inside the bubble and can be rewritten more clearly as 

U 
ifiPe 

The real part of the pressure term provides the natural frequency of the bubble. This natural 

frequency includes a shift that takes into account thermal effects. One half the imaginary part of 

the pressure term is the contribution to damping by heat conduction. For comparison, the damping 

coefficient due to liquid viscosity, C, near resonance is 1.27 x 10-3 for a 100 micron bubble in water 

(10°C, 1 atm). The damping coefficient due to thermal effects is 42.7 x 10-3. 

The solution for Q, from Eqn. (29) can be expanded for both large and small Pe. For large Pe 

define a small parameter, e, as 
_ _J_ 

and take fi to be 

n(Pe-^oo) = Üoo = Ü0 + eÜi+e2Ü2 + ..- (30) 

After taking the expansion described in Eqn. (30) and substituting it into Eqn. (29), we obtain the 

following set of algebraic equations: 

0(1) : 1 - fig = 0 

o(e):       -2n0(ni-K)-3(7~^~J)=o 

ni^                02    oo O  X.-90 ?    ,3(37-2) (7-1)  , 3(7- 1) (1 - Ofr _ 
0{e): -\l{ -2S20"2+«2S2iC-i ^ + (2SI )3/2 

Note that we scale C with the perturbation parameter, e, so that C = Ce- Taking the leading order 

solution fio = 1, the first tw0 corrections of Cl°° are 

* --SaM^) 
n2   =   -|(i + l) (3(l + i)(37-l)(7-l)-3v/2(7-l)C + 2(H-i)C2) 

9 



For small Pe the complete expansion of fi is thus: 

fi(Pe-*0) = fi° = a>o + ewi + e2u;2 + -.- (31) 

in which the small parameter, e is now 

e = Pe 

Eqn. (29) with Eqn. (31) yields the algebraic equations 

0(1): ^-"o=0 

0(e): ;(2<+^) -2^1=0 

v   ' 1575 73 15 Y 

Taking the leading order solution u0 = -4=, the first two corrections to fi° are 

(7-l)(7 + 7)      C(7-l)      ^C2
=Q 

W2    ~ 2520 77/2 3O73/2 2 

Since we are interested in the damping due to thermal effects and not viscosity, we will now set 

£ = 0. The first two corrections for Eqn. (29) are known in terms of Pe for both large and small Pe 

numbers. 

fi°°    «    fio + Hi ^= + ^2 i|- (32) 
VPe Pe 

fi°    «   w0 + wi Pe + u2 Pe2 (33) 

These expansions can be combined in a two-point Pade approximation of the form 

~«, *     Ä/r^ \     0,0 + ai Pe1'2 + a,2 Pe ,„.,. 
fi(Pe) « ft(Pe) = — —rr, — (34) 

K    '       K    '      l + &iPe1/2 + 62Pe 

With the Pade expression above, only the first two terms from the expansion in Eqns. (32)-(33) can 

be matched. Expanding Eqn. (34) for both large and small Peclet numbers gives 

For Pe -> 0 

fi(Pe)    «   a0 + (ai-oo 61) V^e +(02-016!+a0(&?-&2)) Pe 

For Pe -> 00 

10 



The coefficients from the Pade expression can be found by matching them to the coefficients from 

the solution expansions (32,33). 

ao     =    Wo 

ftl Wl WQ 
ai 

02 

(fto - w0)
2 

fioWi 

61    =    - 

fto — Wo 

(fto - wo)2 

fti 
p2    = 

Ho — wo 

With these coefficients, ft can be explicitly written as 

~ 607(l-t) + (6%A7 + 3V2(T-1)) \^ + (2 (/y + 1) (1 + Q) Pe 
-607

3/2(l-i) + (6^7 + 3^2^(7-1)) >/Pi+ (2(^7+1) (1 + 0) Pe 

The expression ft is a function of the Peclet number. We note that ft represents an approximation of 

the root of the harmonic oscillator Eqn. (29) (for C = 0). Thus (29) can be rewritten approximately 

as: 

(ft - ft) (ft + ft*) = o (35) 

Here ft* is the complex conjugate of ft. We denote the damping due to thermal effects by &/,. From 

(35) we can write 

Ctfc = n-n* = 2ö{ft}. 

Fig. 1 is a plot of the magnitude of the response of a bubble being forced periodically. The plot is 

for a Pe= 25, corresponding roughly to a bubble with a radius of 25 pm. Shown in the plot are four 

curves representing solutions obtained from the "exact" equation (28), from the Pade approximation, 

and from the adiabatic and the isothermal limits of Eqn. (28). For a Pe= 25 the plot shows that 

the adiabatic solution underdamps the response while the isothermal solution overdamps. Our Pade 

approximation provides more accurate results for the range of Pe numbers that we are interested in 

corresponding to bubble radii between 5-100 ^m. 

3    The Non-Equilibrium Equation of State (no relative mo- 
tion) 

We now consider a dilute mixture of identical spherical gas bubbles, having radii i?(x,i), which are 

suspended in a liquid medium of density pi and viscosity /x.  When a separation of length scales 

11 
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holds such that the bubble radii are much smaller than the typical distance between bubbles, which 

is in turn smaller than the size of an averaging volume within which a large number of bubbles 

can be found, a non-equilibrium equation of state which relates pressure and density in the mixture 

can be obtained. This also requires the typical wavelength of sound waves in the mixture to be 

large compared to the size of the averaging volume, so that, to a good approximation, the acoustic 

pressure can be considered to be spatially uniform on the scale of the averaging volume. Under 

these approximations, the equation of motion for the radial oscillations of each of the identical 

noninteracting bubbles in the averaging volume is simply the Rayleigh-Plesset equation [32] 

pt[RR + I(i?)2] + 4M| - P0(^F< = -P(x,t) (36) 

This is a nonlinear second order ODE for the bubble radius as a function of time. Here, each overdot 

represents a time-derivative, P0 and R0 are the equilibrium values of the pressure in the mixture (and 

in the bubbles) and the bubble radii, respectively, and P(x, t) is the mean pressure in the mixture at 

the position of the averaging volume. Effects of surface tension have been neglected, while viscous 

damping of bubble pulsations has been taken into account. In (36), 7 denotes the polytropic index 

of the gas inside the bubble; its value ranges from unity, for isothermal bubble oscillations, to the 

ratio of constant-pressure to constant-volume heat capacities of the gas for adiabatic oscillations. 

Generally in the Rayleigh-Plesset equation, the forcing pressure on the right-hand side is regarded 

as the pressure far from the individual bubble; due to the assumed separation of scales, this pressure 

is approximately the same as the mean pressure in the averaging volume surrounding the bubble. 

The volume fraction <j> of bubbles in the mixture can be related to their number density n (number 

of bubbles per unit volume) by 

<j> = \nR3n. (37) 

In terms of <fi the density of the bubbly mixture is given by 

p = Pi(l - 0) + pg<f) « pi(1 - 4>). (38) 

12 



In the last approximation, we have neglected the contribution of the gas phase (density pg) to the 

mass density of a dilute bubbly liquid. In the absence of bubble breakup and coalescence, the number 

of bubbles per unit mass of mixture remains constant with time, i.e. 

— = constant = — . (39) 
P Po 

The subscript 'o' refers to the equilibrium state. Eqs. (37) through (39) can now be combined to 

yield a one-to-one relationship between the mixture density p in the averaging volume and the radii 

of bubbles in that volume: 
£. = i-M*L)*£-. (40) 
Pi tlo     Po 

Upon solving Eq. (40) for R as a function of p and substituting the result into the Rayleigh-Plesset 

equation (36), one obtains a relationship of the general form 

Po 
Pi4>0p V       tppi    Dp . 

+ Zp{Pt-p)Dt Po(pi ~ p) 

3p*(i/p-i/piy/3 
D2p 
Dt2 ^\6p(Pl-p)     p)\Dt) 

(41) 

Eq. (41) relates the mixture pressure P to the density p and its first two time-derivatives. Pro- 

vided that translational motion of bubbles relative to the surrounding liquid is negligible, the time- 

derivatives in (41) are interpreted as material derivatives when the spatial variation of P and p on the 

macroscale is taken into account. A more in depth derivation of this fully nonlinear, non-equilibrium 

equation of state can be found in the paper by Nadim, Goldman and Barbone [33]. 

3.1    Traveling Wave Solution 

In a continuum description of any fluid mixture in which direct viscous dissipation effects are neg- 

ligible, the laws of conservation of mass and linear momentum in the continuum take the standard 

forms: 
dp       dp       du „ ,.., 

,du       du.     dp n ,.„. 

Here, p and p refer to the mean density and pressure in the mixture and u denotes the x-component 

of the translational velocity. Here, only one-dimensional motions along spatial coordinate x are 

considered and all three field variables are dependent upon (a;, t) where t represents time. 

One can seek a traveling wave solution of the above equations by defining the traveling-wave 

coordinate t] as 

r) = x-Ut. (44) 

U is the propagation speed of the waveform. A coordinate transformation from (x,t) to JJ reduces 

(42) and (43) to the coupled system of ODEs 

(u-U)p' + pu'   =   0, (45) 

p(u-U)u' + P'    =   0. (46) 

13 



A prime represents a total derivative with respect to 77. Eqs. (45) and (46) can each be integrated 

once to yield 

p(u-U)    =   Ci, 

du + P   =   C2. 

(47) 

(48) 

Ci and Ci are constants of integration. 

We suppose that at large positive x, i.e., as 77 tends to infinity, the velocity u in the medium is 

zero and the pressure and density attain constant equilibrium values p0 and p0, respectively. The 

integration constants C\ and C2 can be thus evaluated based upon conditions at infinity to be 

Cx = -p0U and C2 = PD- When these values are substituted into (47) and (48) and the variable u is 

eliminated from the two equations, the result is a single nonlinear algebraic equation which relates 

the pressure and density profiles, P(r]) and p(rj): 

P = P0 + p0U*(t-^). 
P 

(49) 

This relationship is exact for one-dimensional traveling waves in any continuum which is described 

by the standard continuity and Euler equations. For the bubbly liquids which are the subject of 

this study, one can find a further relationship, in the form of a non-equilibrium equation of state, 

between pressure and density (and its first two derivatives) in the mixture. The latter can be 

combined with the nonlinear algebraic equation (49) to reduce the problem to a single nonlinear 

ODE that is amenable to phase-plane analysis. 

In the traveling-wave coordinate 77, the equation of state (41) takes the form 

pt^oP   I7      4p,pep0U 
.Poipe - p) *P2{pi-p) 

ptRl(p0/4>o)Va 

+ 3p2(l/p-l/P*)1/3 
PIU* ,„,f       Pi 3\p2

0£/2 

\6p(pe-p)     p)    p2 
>\2 

(P') (50) 
/»' \6p(Pi~P) 

When this equation is combined with the nonlinear algebraic relation (49) resulting from the inte- 

gration of continuity and Euler equations, a second-order nonlinear ODE is obtained for the density 

profile p{rj). The latter ODE is most simply given in its dimensionless form. For this purpose, we 

define dimensionless variables 

P*    =   Plpo 

P*      =      P/Po 

rf    =   w0T)/U 

Pt    =   Pt/Po = l/(l-4>o) 

where quantities with superscript '*' are dimensionless. If this superscript is now dropped for nota- 

tional simplicity, the resulting dimensionless nonlinear ODE for the density profile of the traveling 

wave is 

PibopV        fCpt 1 + ^-M2 

<j>0 (?)- pi-Pi p2(pl-p) 

14 



+ 
1/3 

7 Pi 

<t>l/3pn^3(Pi-p)1/3 V <*&*-% w (51) 

The terms that appear on the left-hand side of Eqn. (51) come from the integrated form of the Euler 

equations and the terms on the right-hand side are from the EOS. Two dimensionless parameters, 

C and M, fully characterize this system. These are defined by 

4/x 
c = 

pi R2o w0 

M   =    U/c0. 

The parameter £ represents a dimensionless damping constant while the Mach number M is the 

ratio of the speed of the traveling wave to the low-frequency sound speed in the bubbly liquid. In 

Eq. (51), a prime denotes a derivative with respect to the dimensionless traveling-wave coordinate 

V- 

3.2    Phase-Plane Description of Traveling Waves 

In order to explore the qualitative features of the solutions of Eq. (51), it is convenient to consider its 

phase-plane. The use of a phase-plane description in qualitatively describing traveling shock waves 

and the nature of the fixed points can also be found in Tan and Bankoff [7]; a similar phase-plane 

analysis of traveling waves in an Euler-Poisson model of a plasma is presented by Cordier et al. [34]. 

To examine the phase plane, the second-order nonlinear ODE is written as a system of two 

first-order equations by introducing the new variable g to denote p'. This results in the coupled 

system 

=    9, (52) 

Where, 

a'   =  A(p) 
Cipt 

4>o      \  p  )    \pi-p)     p2(pt-p) 

\P     6p(pt-P)J 

m 4>l/3Pn/3(Pe-p)1/3 

1/3 

(53) 

The phase-plane displays all possible solutions of this system of equations, with p on the horizontal 

axis and g (i.e. p') on the vertical axis. To find the fixed points of the system, we set both p' and g' 

to zero. The following equation describes the locations of the fixed points, 

'Pl<t>oPV l + -f-M2 

<Po ^ Pi- p 
= 0. (54) 
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Since pi = 1 satisfies Eqn. (54) it is a fixed point. Note that pt = 1/(1 - (j>0)- The other fixed point 

can be found graphically by plotting Eqn. (54). Fig. (2) is a plot showing the two cases possible, 

M > 1 and M < 1. For M > 1 the solid curve crosses the p-axis at a value of p higher than unity. 

This is the location of the second fixed point. For M < 1 there is no second fixed point, indicated 

by the fact that the dashed curve never crosses the />-axis. 
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C-0.1   M-1.5 

1.008 

Figure 3: 

Fig. 3 provides a typical phase portrait of the system for the case when Mach number exceeds 

unity — in this case M = 1.5. As seen in this figure, the fixed point at p\ = 1 is a saddle point, with 

trajectories in the first and third quadrants moving away from this point and those in the second 

and fourth quadrants coming towards it, for increasing rj. The other fixed point is a spiral node 

(when C = 0.1). The location of the second fixed point, p2, is the second root of Eqn. (54). There 

is a single trajectory which connects the two fixed points, identified in Fig. 3 as the shock solution. 
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This trajectory spirals away from the fixed point at p2, and eventually tends toward the saddle point 

at p = 1, for increasing rj. The solution profile p{rj) corresponding to this trajectory is displayed in 

Fig. 4. 

? = 0.1   M = 1.5 

Figure 4: 

This solution represents a density disturbance of steady shape that propagates to the right at 

dimensionless traveling-wave speed M - U/c0 = 1.5. The dimensionless density at large positive 

77 approaches unity (i.e., the density approaches its equilibrium value p0 far ahead of the shock, as 

required by the original boundary conditions at large positive x). At large negative 77, far behind the 

shock, the density settles down to the higher value p2 after a series of oscillations which are associated 

with the spiral trajectory near the node in the phase plane. The fact that these oscillations exist at 

all is related to the presence of the second derivative term in ODE (51), which is in turn associated 

with the second derivative term in the non-equilibrium equation of state, (41), and the Rayleigh- 

Plesset equation (36). Thus, the oscillations observed behind shock waves in bubbly liquids are 

simply a result of the volume oscillations of gas bubbles in the medium when they are subjected to 

a somewhat sudden increase in pressure, as the pressure wave goes by. 

It should be noted that the direction of the arrows in Fig. 3 corresponds to increasing 77. The 

trajectories in the phase-plane can also be interpreted as functions of time but with their directions 

reversed. For instance, as a function of time, at a fixed spatial position in space initially far ahead 

of the shock, the density would start near its equilibrium value p\ = 1 (the saddle fixed point) and, 

as time progresses, move along the shock trajectory (in the sense opposite to those indicated by the 

arrows) and end up at the higher density p2 for large positive times. 

4    Equation of State (with relative motion) 

Relative motion has been shown in papers by Kameda and Matsumoto [10] and Ishii et al. [9] 

to be important in determining the exact waveform of shocks in bubbly liquids. It is possible to 

derive a new EOS that allows for relative motion between the gas phase (bubbles) and the liquid 
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phase. When there was no relative motion between the phases, it was possible to write the bubble 

radius, R, as a function only of the mixture density[33]. If we allow for relative motion, the exact 

functionality of R becomes more complicated. The number of bubbles that are in a given volume 

must simultaneously be tracked. This leads to a new relation for the bubble radius, 

*<-> = #^ 
(55) 

Here n is called the number density and is defined as the number of bubbles per unit volume. Both p 

and n are field variables and depend on time. If Eqn. (55) is substituted into Eqn. (36), the resulting 

expression for the average pressure is 

P(x,i)    =   Pi 
np + (pe - p)n 

6(^/9f)5jlf(^-p)5 

5hp 
9(^pe)sn3(pi-p)3 

ll{pt-p)*n2 

18(f^)fnf 

+ t  
18(f pe)ini(pt-p)i 

np + (pe - p)n 

MPe ~ P) 
>M^V,        (56) 

\n0(pe-p)J 

where the overdots represent the convective derivative with respect to the gas phase velocity. In 
Eqn. (56), the first term in the bracket is from inertial forces, the second term is due to viscous 

stresses on the bubble interface and the last term is from the ideal gas law for adiabatic bubbles. 
We now need equations describing how the number density, n, and the gas phase velocity, v, change 

with space and time. For n we can use a continuity equation of number density as long as we assume 
that bubbles cannot be created or destroyed during our time of interest. For v we will use the gas 

phase momentum equation which reduces to a force balance on a bubble if the inertia of the gas is 

ignored. These equations are 

dn 
dt 

+ V • (nv) = 0. (57) 

n 3        .lDgR 
u) - 2^ 

-\2-KßiRn(v - u) + pt4> (Dm 
V Dt 

(DgV_DjU\ 

V Dt       Dt ) 

-) 
(58) 

The forces in Eqn. (58) were multiplied by n, to obtain the total force per unit volume. The first 

term in Eqn. (58) is the force resulting from changes in the bubble radius as it translates, and the 

last three terms in Eqn. (58) are due to the added mass, the drag and buoyancy, respectively. Note 

that in the force balance equation there exist two different material time derivatives, following either 

the bubble velocity, or the mixture velocity: 

Dt       d 
Dt 

E± 
Dt 

dt 
d_ 
dt 

+ u-V 

+ v-V 
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If in Eqn. (58) buoyancy is neglected and Eqn. (55) is used to replace R, then we will have a 

equation describing the velocity of the gas phase in terms of the mixture density, mixture velocity 

and the number density: 

DgV 

Dt 

„ De u     ,        . 
:3-ör + (v-») 

1     Dgp     1 Dgn 
pe — p Dt      n Dt 

•18i// 
/  4npen  \ 

\3(j>t-p)J 
(59) 

4.1    Traveling Wave Solution 

In a manner similar to the case of no relative motion, we seek a traveling wave solution to the system 

of equations describing bubbly liquids with relative motion. As before, the governing equations are 

recast in terms of the traveling wave coordinate 77, where 77 = x - Ut. The conservation equations 

are: 

(60) 

(61) 

(62) 

After integrating these equation we can assume for the boundary condition at 77 -> 00 (x -> 00) that 

the velocities are zero and the pressure, mixture density and number density go to their equilibrium 

values of P0, p0 and n0, respectively. Prom these results we have equations relating the velocities 

and pressure to the density and number density: 

,P-Po, 

(u- - U)p' + pu' = 0, 

(v- - U)n' + nv' = 0, 

o(u - U)u' + P' = 0, 

u   =   £/(- 
P 

TTin~n°\ 

P   =   P0 + p0U\^^) 
P 

(63) 

(64) 

(65) 

Equations (63-65) can be combine with the traveling wave versions of Eqns. (59) and (56) to obtain 

two ODEs for p{r}) and 71(77). F°r brevity we only provide the system of ODEs in matrix form as: 

1 0 

0 1 

0 0 

0 0 

0 

0 

0 

0 

p—n n-£ 
n2p{pt—p)      n3p       n 

Pl-P 

n 

I  9'   J 

> = < 

9 

Q 

fi{p,n,g,q) 

. h(p,n,g,q) t 

(66) 

All the variables in Eqn. (66) have been nondimensionalized using the same scales introduced in 

previous traveling wave analysis. In addition we have nondimensionalized velocities v and u with 

the constant traveling wave speed, U, and the number density, n, with n0 = <j>0/V0 where V0 is the 

initial volume of a bubble. As with the case of no relative motion, there are three main parameters 

controlling the qualitative structure of the shock wave. Fig. (5) shows the solutions to the ODEs 
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represented in Eqn.   (66) for a viscous damping of ( = 0.1 and a range of values for the Mach 

number, M, and initial volume fraction of gas, <f>0. 
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Figure 5: 

The plots in Fig. (5) are arranged in a matrix form, with solutions of the same Mach number in 

columns and solutions with the same initial gas fraction (ahead of the shock) in rows. From the nine 

plots shown in Fig. (5) we can see three distinct shock waveforms. The shock in Fig. (5b) begins with 

a sharp rise in pressure to an over-peaked value followed by a oscillatory region. From Fig. (5f) we 

again see a sharp rise in pressure with an oscillatory region, but these oscillations are about a lower 

pressure value than the final equilibrium value. The oscillations are followed by a relaxation region 

which is due solely to the relative motion of the gas bubbles and not their oscillations (the bubbles 

have stopped oscillating by this point). The last qualitative waveform mentioned here is illustrated in 

Fig. (5g). This waveform results in a slower monotonic rise in pressure with no oscillatory behavior. 

The suppression of oscillations in the shock waveform was a direct result of allowing the bubbles to 

move relative to the liquid in the model. These results are consistent with the results of Ishii et dl 

[9]. 
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5    Conclusion 

We have developed a non-equilibrium, nonlinear equation of state (EOS) that provides a dynamic 

relation between pressure in the mixture and the mixture density and the number density. The 

EOS contains the first two material time derivatives of both the mixture density and the number 

density, allowing for the possibility for solutions with oscillatory behavior. We have examined some 

of the possible traveling wave solutions obtained when the nonlinear EOS (with and without relative 

motion) is combined with the fully nonlinear equations of mass and momentum conservation. The 

structures of the shocks solutions were found to agree qualitatively with the waveforms observed in 

the experiments performed by Noordzij and van Wijngaarden.[2] 

The attenuation of pressure waves are related to the damping mechanisms that exist for bubbles. 

The three most important damping mechanisms are associated with heat transfer between the gas 

bubble and the liquid, the drag due to relative motion of the bubble and viscous dissipation at 

the bubble interface. We have incorporated the latter two damping mechanism in our model. In 

addition, in our research we have shown how one can introduce an effective damping parameter 

that captures the thermal dissipation which occurs in a bubble oscillating periodically. We have 

shown that the effective damping parameter allows a more accurate description than that obtained 

by modeling the bubbles as either purely isothermal or adiabatic. 
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